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Abstract—Scan registration methods can often suffer from
convergence and accuracy issues when the scan points are sparse
or the environment violates the assumptions the methods are
founded on. We propose an alternative approach to 3D scan
registration using the curvelet transform that performs multi-
resolution geometric analysis to obtain a set of coefficients
indexed by scale (coarsest to finest), angle and spatial position.
Features are detected in the curvelet domain to take advantage
of the directional selectivity of the transform. A descriptor is
computed for each feature by calculating the 3D spatial histogram
of the image gradients, and nearest neighbor based matching is
used to calculate the feature correspondences. Correspondence
rejection using Random Sample Consensus identifies inliers, and
a locally optimal Singular Value Decomposition-based estimation
of the rigid-body transformation aligns the laser scans given the
re-projected correspondences in the metric space. Experimental
results on a publicly available dataset of planetary analogue fa-
cility demonstrates improved performance over existing methods.

I. INTRODUCTION

Sensors such as RGB-D cameras, LIDAR, Time of Flight
(ToF), and stereo cameras provide information as point-
sampled 3D surfaces, termed point-clouds. Overlapping scans
share a common set of points that can be used for matching
in order to estimate the relative rigid body transformation
between scans (6-DOF rotation and translation). Separate
views of the same environment can be accumulated into a
global coordinate system which helps an intelligent mobile
robot perform tasks in an unstructured environment. Finding
accurate transformation parameters given a relatively large
initial inter-scan transformation error, makes the registration
problem especially hard.

Instead of working in the metric space, transform-based
scan registration methods can often take advantage of the
special properties of the transformations and improve the
overall efficiency. Among various multi-scale transformations,
curvelet transform is one of the many multi-resolution geomet-
ric analysis techniques that generates a sparse representation
of the 3D laser scan and efficiently represents the underlying
surface structure with high anisotropic elements (edges and
singularities along curves) as a set of coefficients that capture
details from coarse to fine levels. The curvelet transform
has been widely used in the computer vision and image
processing fields for image denoising, feature extraction, edge
enhancement, and image fusion, among others.

In this work, we present a novel approach to scan reg-
istration using the curvelet transform. Instead of using an
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approximate sub-band of curvelet coefficients to solve the
dimensionality problem, we instead find suitable features in
the curvelet domain via difference of curvelets operator at
multiple scales followed by extrema detection and filtering.
Feature descriptors around the candidate keypoints are com-
puted from 3D spatial histograms of image gradients and the
correspondences are found using nearest neighbor matching.
Feature correspondences are filtered using Random Sample
Consensus (RANSAC) to reject outliers and the laser scans
are aligned using Singular Value Decomposition (SVD) based
estimation of rigid body transformation.

The rest of the paper is organized as follows: Section 2
provides the related work in the area of scan registration and
a problem formulation is presented in Section 3. Details of
the proposed method are given in Section 4. Quantitative and
qualitative results for an indoor 3D laser scan dataset are
provided in Section 5 with a discussion on suitability of the
algorithm for mapping. Section 6 concludes the paper with
directions for future work.

II. PREVIOUS WORK

One of the most popular scan registration methods-iterative
closest point (ICP) [1]–[3] relies on point-to-point correspon-
dences to estimate the relative transformation of scans by
minimizing the Euclidean distance error metric. The original
ICP algorithm assumes that there exists a correspondence
between each point of the source and model datasets. This
assumption is often violated with partially overlapping scans.
Some modifications to the ICP algorithm have included the
maximum error cutoff metric to account for false correspon-
dences, and did not require every point to be matched. One of
the key problems is that the sparsely sampled corresponding
points in two different scans often do not correspond to the
same point in the 3D environment, but ICP assumes that
they do. In addition, the quality of the ICP solution depends
heavily on the availability of good initial estimates of the
transformation [1].

Many extensions to the original ICP have been proposed
that transform the point clouds from metric space to feature
space for fast correspondence based matching. They rely on
finding unique features in the two scans, in order to improve
the registration accuracy. Features based on color and intensity
values [4], normals [5], [6], curvatures [7], integral volume
descriptors [8], moment invariants [9], spherical harmonics
[10], spin images [11], corners, lines and planes [12], [13],
the scale-invariant feature transform (SIFT) [14], and combina-
tions of the above [15] have all been suggested. However, all of
these features are prone to measurement noise and cannot deal
with varying sampling density within the point cloud. Locally



planar surface structure was exploited by Segal et al. [16] for
plane-to-plane correspondence search in generalized iterative
closest point algorithm (GICP). The assumption of presence
of planar structures restricts the applicability of the algorithm.
Rusu et al. introduced the Sample Consensus-Initial Align-
ment (SAC-IA) algorithm [17] using 16-dimensional point
feature histograms that describe the local surface structure.
Experimental results showing the robustness of these features
to outliers and invariance to pose, sampling density, and
measurement noise are lacking in the literature. Various heuris-
tics based on false correspondence rejection and re-weighting
have tried to improve the robustness but the convergence is
not guaranteed. In addition, these features require extensive
computational steps and the resulting transformation is only
an approximation due to the compact representation of a 3D
surface (in metric space) as a feature point in feature space.

A relatively new approach to 3D point set registration
algorithm is the normal distributions transform (NDT) that
represents the underlying scene geometry as a Gaussian prob-
ability distribution [18], [19]. 3D-NDT partitions the space
into disjoint volumetric cells called voxels and represents
points within the voxels as a probability density function
(PDF). One of the key benefits of this approach is that it
forms piece-wise smooth spatial representations, however the
division of points into voxels results in discontinuities in
the cost function that make it susceptible to local minima
[20]. Several variants based on multi-scale approaches have
been proposed that minimize the discretization effects by
calculating normal distributions from eight neighboring voxels
and interpolating the weights [21], using K-means clustering
[22], greedy clustering [23], and region-growing clustering
with eigen-features [24].

Frequency-domain based approaches such as [25]–[27] de-
couple the problem of finding rotation and translation transfor-
mation parameters and attempt to find a suitable registration
in the transformed domain. Phase correlation is typically em-
ployed for matching which is resilient to noise and occlusions,
while fast Fourier transforms (FFT) used to compute cross-
correlations makes this approach computationally efficient.
However, the Fourier transform can only retrieve the global
frequency content of the signal at the expense of time infor-
mation and provides a dense representation of the underlying
signal.

Another transformation found in the literature relies on
finding a translation invariant Fourier domain transform on two
Extended Gaussian Images (EGI) [28] of laser scans, however,
this approach can only be applied to smooth surfaces and fails
to match surfaces with constant EGI (such as a sphere). Censi
et al. [29] proposed a new approach to scan matching that
projects the two scans into the Hough/Radon domain [29]
defined on the unit sphere. Similar to the work of Makaida et
al. [28], a translation invariant spectrum is computed to find the
rotation and 1D cross-correlations are used to find the transla-
tion. A major disadvantage shared by both EGI based approach
and the ones based on transformation to Hough/Radon domain
is the sensitivity of the algorithms to measurement noise and

sampling density during the calculation of normals.
Unlike the shape-fixed rectangles in frequency domain of

conventional FFT, multi-scale transforms such as discrete
wavelet transform (DWT) use dilated shape varying rectangles
to find directional elements such as edges and ridge features in
the laser scans. However, many wavelet coefficients are needed
to account for singularities along lines or curves. To overcome
this problem, other directional wavelets such as wedgelets
[30], beamlets [31], contourlets [32], surfacelets [33], etc.
have been proposed, however the detected features are less
prominent. In order to account for curve-singularities, curvelet
transform has previously been proposed which generates an
optimal sparse representation of the objects within the scan
and employs angled polar wedges in the frequency domain
to find directional features. Previously, Alam et al. applied
curvelet transform for the problem of image fusion [34] where
only an approximate sub-band of the coefficients was used
for registration with an assumption of normal probability
distribution of coefficients. This work has been inspired by the
techniques used in the computer vision field for image fusion,
and to the best knowledge of the authors, there has not been
a detailed study of the application of curvelet transform for
scan registration.

III. PROBLEM FORMULATION

Given two 3D point sets, model set M = {m1, · · · ,mNM}
and data set D = {d1, · · · , dND

} where mi, dj ∈ R3 for
i ∈ {1, · · · , NM}, j ∈ {1, · · · , ND}, scan-to-scan registration
algorithms obtain a 6-DOF relative alignment of the two
scans that creates a single, globally consistent model of
the environment by maximizing the similarity between scans
after transformation. An estimate T of the true rigid body
transformation T ∗ = {R, t} ∈ SE(3), with rotation R =
{Rx, Ry, Rz} ∈ SO(3) and translation t = {tx, ty, tz} ∈ R3

can be obtained from:

T ∗ = argmax
T∈SE(3)

C(M,T (D)) (1)

where C(M,T (D)) is the similarity metric between the model
set M and the transformed data set T (D).

IV. PROPOSED METHOD

In order to incorporate curvelet transforms into the scan
registration process, we define a similarity metric that is
computed via a five-part algorithm as follows.

1) Range images RM and RD ∈ I = RX×Y+ of dimension
X × Y are constructed from the spherical projections
of the 3-D laser scans, M and D. Background regions
surrounded by a connected border of foreground pixels
are assigned an intensity value by employing a hole
filling algorithm [35]. A Gaussian filter of size 3 × 3
with a standard deviation of 0.5 is used to smooth the
range images and is followed by normalization of the
range intensity values. Figure 1 shows the range image
generated from the first 3D laser scan in the a100 Mars



Dome dataset [36], with an angular resolution of 0.5
degrees in both x and y directions.
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Fig. 1. Range image generated from the spherical projection of the first 3D
laser scan in the a100 Mars Dome dataset [36], with an angular resolution of
0.5 degrees in both x and y directions.

2) The discrete curvelet transform is then applied to each
range image to obtain two sets of curvelet coefficients.
The discrete curvelet transform is a linear digital trans-
formation consisting of complex valued basis functions
Ψj,l,k : R2 → C parameterized in three spaces: scale
2−j ∈ R, orientation θl[0, 2π) = 2π · 2−bj/2c · l, where
l = 0, 1, . . . 2bj/2c − 1 ∈ Z1, and scale dependent
relative position x

(j,l)
k = R−1θl (k12−j , k22bj/2c) ∈ I ,

where k = (k1, k2) indexes a standard translational
grid that is adjusted to each scale value. The discrete
curvelet transform of an n×m Cartesian array formed
from the range image of size X × Y pixels is defined
as the inner product between an element of the array
f(t1, t2)0 ≤ t1 < n, 0 ≤ t2 < m, and the curvelet basis
function Ψj,l,k, given as [37]:

c(j, l, k) = 〈f,Ψj,l,k〉
=

∑
0≤t1<n,0≤t2<m

f [t1, t2]Ψj,l,k[t1, t2]

where Ψj,l,k is the basis function for the discrete
version of the forward transform and c(j, l, k) is the
indexed curvelet coefficient. Curvelet transform imple-
mented using second generation fast discrete curvelet
transform (FDCT) via wrapping is available at http:
//www.curveleab.org. Figure 2 presents the log of the
curvelet coefficients for the range image in Figure 1 for
scales from the coarsest to level 4, and for angles from
the 2nd coarsest to level 16. The center of the display
shows the low frequency coefficients at the coarsest
scale, with the Cartesian concentric coronae at the outer
edges at various scale levels, showing coefficients at
higher frequencies. Each corona contains four strips
which are subdivided into angular panels [37].

1The notation bxc denotes the floor of x, which truncates a positive real
number to its integer component.

Fig. 2. Log of the curvelet coefficients for the range image in Figure 1 for
λ = 1 . . . 4 and φ = 2 . . . 16.

3) The Cartesian array formed from the range image can
be reconstructed from the curvelet coefficients c(j, l, k)
by taking the inverse curvelet transform as [37]:

Ic =
∑
j,l,k

c(j, l, k)ψ̃j,l,k (2)

where Ψ̃j,l,k is the basis function for inverse transform.
Additionally, it is possible to invert each scale level
individually, leading to scale dependent reconstructed
images.

Ic(j) =
∑
l,k

c(j, l, k)ψ̃j,l,k (3)

A novel differences of curvelets (DoC) image feature is
introduced to identify stable locations that are invariant
to scale. Contributions from individual sub-bands from
two nearby scales is subtracted to produce a set of
difference-of-curvelet images as follows:

IDoC(j) = Ic(j)− Ic(j − 1) (4)

Similar to Scale Invariant Feature Transform (SIFT)
[38], local maxima and minima over scale and space is
used to find potential keypoints by comparing the pixel
value at the current scale with its 8 connected neighbors,
and 9 other pixels in both next and previous scales. The
result is then thresholded to eliminate low-contrast key-
points, and keypoints lying close to the minimum cutoff
range of the sensor, to obtain robust interest points (See
Figure 3). A 16x16 neighborhood around the keypoint
is used to obtain a 128 bin feature descriptor from the
3D spatial histogram of image gradients. This approach
makes the algorithm robust against illumination changes.

4) A quick and efficient feature matching is performed
using approximate nearest neighbor search in the fea-
ture space and feature correspondences are established
between curvelet feature pairs. The nearest neighbor is
defined as the feature with minimum Euclidean distance
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Fig. 3. Curvelet features (in red) from the range image in Figure 1.

to another feature in the feature space. Feature corre-
spondences are filtered using RANSAC to reject outliers.

5) Filtered corresponding curvelet feature pairs in the met-
ric space are used to estimate the rigid body transfor-
mation by employing SVD.

V. EXPERIMENTAL RESULTS

The proposed approach is evaluated using a planetary ana-
logue indoor dataset(the a100 dome) [36] consisting of 95
scans obtained by vertically scanning SICK LMS291-S05 laser
rangefinder with a vertical resolution of 0.5 degrees. The scans
were taken at the University of Toronto Institute for Aerospace
Studies (UTIAS) rover test facility at Toronto, Ontario. The
environment within the dome emulates unstructured Mars-like
terrain with sand, gravel, and hills. Registering scans from an
emulated Mars terrain is quite challenging as some laser scans
demonstrate low degree of overlap and lack sufficient features
to match the scans with each other, even with full 360◦ x
180◦ scans of the terrain (see Figure 4) . The poor structure
of the Mars like terrain coupled with the shallow grazing
angle results in a variable resolution, occluded, sparse range
data that is hard to register without some a-priori knowledge
of the environment. Ground truth data is provided from four
retroreflective markers.

The algorithms used for comparison are ICP, G-ICP, NDT,
SAC-IA, and Harris-3D with reference implementations pro-
vided in the point-cloud library (PCL) [39]. The ICP, G-
ICP and SAC-IA algorithms are implemented with maximum
correspondence distance set to 10m, and the NDT algorithm is
implemented with Newton line search maximum step length of
0.1, and voxel grid resolution of 2m. Surface normals for the
SAC-IA and Harris-3D algorithms are computed with a radius
search parameter of 0.5 m and normals are flipped towards
the sensor viewpoint. Harris-3D features are computed with
a threshold parameter set to 1e-5 and 33-dimensional FPFH
descriptors in both the Harris-3D and SAC-IA algorithms
are computed with the radius search set to 5 times the
radius for calculation of surface normals. RANSAC based
correspondence rejection and initial alignment computation
is performed for Harris-3D algorithm similar to steps 4-5 in
Section IV.

For all algorithms, the maximum iterations was set to 500
and the optimization was terminated when the norm of the

(a)

(b)

(c)

Fig. 4. Ground-truth-aligned pointclouds from a100 Mars Dome dataset [36]
demonstrating low degree of overlap in (a-b) and lack of sufficient features
for scan registration (a-c). (a) Scans 10 and 11, (b) Scans 20 and 21, and (c)
Scans 60 and 61.

gradient or the norm of the step size falls below 10−6. Pair-
wise scan registration was performed using every 10th scan
with initial conditions set to zero. The absolute error in rotation
and translation is compared with the ground truth measure-
ments. Figure 5 shows the empirical distribution function plots
for absolute translational and rotational errors. Assuming that
the error samples are independent and identically-distributed
random variables, the asymptotic behavior of the empirical
measure of the error samples can be determined using the
empirical cumulative distribution function [40]. It is defined
as the proportion of error samples less than or equal to a given
error metric, converging with a probability of one.



TABLE I
ABSOLUTE TRANSLATION AND ROTATION ERRORS

Absolute Translation
Error (m)

Absolute Rotation
Error (rad)

Median MAD Median MAD
ICP 2.9699 1.2405 0.4419 0.3339

G-ICP 2.4635 1.1339 0.3424 0.2346
NDT 2.6705 0.9397 0.5465 0.4571

SAC-IA 1.2903 0.8528 0.1304 0.0681
Harris-3D 0.3615 0.2220 0.0358 0.0197
Proposed
Method 0.1936 0.1038 0.0274 0.0224

The error distributions from Figure 5 demonstrate that
curvelet transform based scan registration demonstrates a
faster convergence to a probability of one, thereby achieving a
higher percentage of registered scans with lowest error metric
when compared with other methods. The median and median
absolute deviations (MAD) for absolute errors in translation
and rotation given in Table V.

The large translational and rotational error in NDT can
be attributed to the poor convergence properties of NDT.
The quality of alignment is directly dependent on the de-
gree of scan overlap, point selection strategy and accurate
correspondences. Both ICP and G-ICP algorithms show high
translational and rotational errors due to the lack of feature-
rich regions in the scans and absence of planar structures.
SAC-IA algorithm demonstrates a lower error as compared
with ICP, G-ICP and NDT algorithms as only persistent
features are used for matching, however since it requires the
computation of surface normals, it suffers from the problem
of finding the correct radius size, given the resolution of the
scan. Harris-3D algorithm finds corner points in the scan from
the gradients of surface normals. In addition to the radius
problem described before, Harris3D often considers points
lying in the depth-discontinuous regions of the scan as corner
points. Due to poor feature locations and inaccurate feature
correspondences, Harris3D fails in scans that lack sufficient
number of corner points. Compared with other algorithms,
curvelet transform based scan registration demonstrates low
translational and rotational error.

Figure 6 displays the close-up views of the fifth registered
scan-pair using ICP, G-ICP, NDT, SAC-IA, Harris-3D and
curvelet methods. Visually, the resulting aggregated registered
scans using Harris-3D and curvelet algorithms demonstrate
better alignment as compared with other algorithms. However,
for this scan pair, curvelet based registration results in lower
absolute translational and rotational error.

VI. CONCLUSIONS AND FUTURE WORK

This work presents a curvelet transform based method for
improving the convergence properties of standard registra-
tion algorithms. Instead of using an approximate sub-band
of curvelet coefficients to solve the dimensionality problem,
we instead find suitable features in the curvelet domain via
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Fig. 5. Empirical cumulative distribution function plots for errors in
transformation parameters for a100 Mars Dome dataset [36], (a) Absolute
translational error (m). (b) Absolute rotational error (rad).

difference of curve lets operator at multiple scales followed
by extrema detection and filtering. Feature descriptors around
the candidate keypoints are computed from 3D spatial his-
tograms of image gradients and the correspondences are found
using nearest neighbor matching. Feature correspondences
are filtered using Random Sample Consensus (RANSAC) to
reject outliers and the laser scans are aligned using Singular
Value Decomposition (SVD) based estimation of rigid body
transformation. Experimental results on a publicly available
dataset of planetary analogue facility demonstrates improved
performance over existing methods.
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Fig. 6. Registered laser scans 40 (red) and 41 (green) from a100 Mars Dome dataset [36], (a) No alignment (b) Ground Truth (c) ICP (d) GICP (e) NDT
(f) SAC-IA (g) Harris-3D (h) Proposed Method. (best viewed in colour)
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